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Abstract. Exact scaling treatments are given of anisotropic diffusion in pure and diluted 
chains, and in a fractal. A dynamic decimation method is used to obtain detailed dynamic 
scaling descriptions. The results for chains show crossover to drift or localised behaviour, 
induced by anisotropy or dilution. The fractal results include bias-induced crossover, with 
exponent unity, from anomalous diffusion behaviour (exponent log, 5 )  to drift behaviour, 
and scaling corrections (exponent log, 3 )  arising from rotational anisotropy. 

Dynamic behaviour can be strongly modified by critical effects, e.g. those associated 
with the divergence of a thermal correlation length at an ordinary second-order 
transition (see e.g. [l]), or a geometrical characteristic length at such transitions as the 
percolation transition in dilute systems [2-41. An example is the modification of the 
power law relating wavevector k and frequency w for long wavelength spin waves 
near the percolation transition in a dilute magnet [2-81. This is closely related to the 
change over from simple hopping diffusion to an anomalous form at the percolation 
threshold [9-111. These related effects have been the subject of much recent discussion 
using approximate scaling treatments of the dilute system [8], or by treating [8-111 its 
approximate representation by a non-random fractal [ 12, 131 or by simulation [ 141 or 
other computational methods [15]. 

The change over between simple-spin wave dispersion, or simple diffusion, and 
modified (‘anomalous’) behaviour is an example of a relevant field inducing crossover. 
The importance and great diversity of crossover effects is well known in static critical 
behaviour (see, e.g. [ 161) but is relatively unexplored in critical dynamics, that in the 
neighbourhood of the percolation threshold being one of the few examples so far 
considered in detail. Another currently receiving attention is the class of random walks 
with various types of relevant perturbation, e.g. interactions [ 17,181, ‘true’ self avoid- 
ance [19], or trapping [20]. An important member of this class is the biased random 
walk, which is equivalent to an anisotropic diffusion problem (with asymmetric transfer 
rates). For this system, Monte Carlo simulations [21] have shown striking crossover 
behaviour. Biased diffusion in a one-dimensional model has been recently discussed 
[22], but little is known about anisotropy effects in critical dynamics in more general 
situations. 

The aim of the present letter is to give an analytic investigation of anisotropy 
crossover, or corrections to scaling, and dilution induced criticality in diffusion 
dynamics for some exactly soluble lattice based systems. 

Such critical, crossover and corrections-to-scaling effects in dynamics are con- 
veniently described in phenomenological scaling terms [23]. Moreover, scaling 
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methods, which are designed to exploit the diverging characteristic length which leads 
to criticality, can now be set out in such a way that they can handle dynamic situations 
directly in position space [5], which has unique advantages for treating random systems 
[5,8,24] and non-random, non-uniform systems such as fractals [8-111 (where they 
provide the only route to an exact solution). 

In this letter such scaling methods are used to provide exact treatments of anisotropic 
diffusion in two such systems. The first is a linear chain subject to simple bias and 
weak dilution. The usual diffusion relationship w = Dk2 is found to be modified by 
both the bias, which leads to the physically expected drift effects characterised by a 
modified exponent, and by dilution. The second system to be treated is a (pure) gasket 
fractal which can be subjected to more general forms of lattice anisotropy. It is shown 
that bias again causes crossover to drift behaviour, with crossover exponent unity, and 
rotational anisotropies cause corrections to scaling. 

The discrete diffusion equation for a linear chain with nearest-neighbour hopping 
probabilities different in the two directions (i.e. bias) is 

(1 - w ) u ,  = x ( l + x ) - ’ u n + l + ( l + x ) - ’ u n ~ l  

where w is a reduced frequency, U, characterises the occupation probability for site 
n, and the two x-dependent coefficients are the hopping probabilities, so x - 1 is a 
measure of the bias. Dilution is ignored for the present. A decimation scaling [6] of 
the equation of motion (1) is simply achieved by writing down corresponding equations 
with n + n * 1 and using them to eliminate U, f 1. This results in an equation of similar 
form to (1) but now relating U, to U, * 2. The resulting equation has in place of w,  x 
new variables w’ ,  x‘ given by 

0’ = (1 + x)’( 1 + x2) - ’ (2w - w2) (2) 

(3) 
These are the transformation equations corresponding to a length scaling of the 

pure system by a dilatation factor b =2. Now it is necessary to generalise the above 
decimation procedure to the dilute case. Here the hopping terms (’bonds’) are random 
variables subject to an initial binary distribution corresponding to the following two 
possibilities: bond present or absent with probability p or (1 - p )  where p is the bond 
concentration. The decimation process then leads to new random bond variables, 
corresponding to the effective hoppings between sites n and n zt2,  and hence to a 
scaling of their distribution exactly analogous to that found in a treatment of dynamics 
of the diluted Heisenberg chain [24]. Though in general correlations develop, near 
the pure limit they are negligible and the result is that ( 2 )  and (3) remain correct except 
for terms of order (1 - p ) ,  while in addition p scales according to the exact equation 

2 x ’ = x .  

To obtain the crossover induced in the dynamics in the diffusive limit ( w  + 0) by 
weak dilution and anisotropy it is sufficient to linearise the scaling equations about 
the pure, isotropic, zero-frequency fixed point ( U * ,  x*, p * )  = (0, 1, 1). This results in 
a dynamic scaling form for the characteristic diffusion frequency, together with an 
associated critical behaviour of the percolation correlation length 5: 

w = k’G((Gx)’/k, e), [ K ( G p ) - ” .  (5) 

In these expressions, ax=  x - 1, 6 p =  1 - p ,  and k, are all small, and the dynamic 
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exponent, anisotropy crossover exponent, and percolation exponent take the values 
z = 2, C$ = 1 ,  v = 1. The above results are exact. 

The asymptotic forms of the scaling function G(a,  p )  are G - D for p >> 1 >> a ; 
G - A a  for a, p >> 1 ; G - B P p 2  for 1 >> a, p ; G - Cap-1 for a >> 1 >> p. D is the diffusion 
constant, and A, B, C are three other constants (with B - D, A - C). The first three 
of these forms imply that the bias causes the low-frequency dispersion to cross over 
from quadratic ( w  - Dk') to linear form w - Aksx, and the' dilution causes crossover 
to w - B/&', which is characteristic [5-8,241 of localised diffusion on clusters of 
characteristic size 6. When both dilution and bias are present the asymptotic behaviour 
is w - CSx/&, which can be interpreted as due to ballistic motion limited by the finite 
cluster size. 

The second system to be discussed is the triangular Sierpinski gasket fractal [12]. 
This has been proposed as a model for the infinite cluster backbone at the percolation 
threshold [2,13] and that is one motivation for considering it here. Its static and 
isotropic dynamic scaling properties have been the subject of much recent work 
[8-11, 131. A generalisation to anisotropic diffusion dynamics is now presented, which 
provides exact statements for anisotropy effects in the model. 

The fractal is obtained from an equilateral triangle by dividing it into four equal 
triangles, discarding the central one, and continuing the same process of division, etc, 
for each remaining triangle [12, 131. A part of the resulting fractal is shown in figure 
l (a ) .  As indicated in figure l (b ) ,  a, a, p, p, y, 7 are used to denote reduced hopping 
probabilities (each incorporating a frequency-dependent factor) different in the six 
hexagonal directions. With this notation the diffusion equation analogous to ( l ) ,  for 
hopping to and from the vertex 0 of figure l (a ) ,  is 

U0 = au1+ ?U* + pu3 + au,. ( 6 )  

3' 2' 0 P /o?&/ +**. 
4' 4 0 1 1' 1 ij 

( 0  1 (6) 

Figure 1. (a)  Part of fractal used for decimation process; ( b )  anisotropic hopping variables. 

The scaling of frequency w and anisotropy is obtained by constructing the transfor- 
mations of the variables a,. . . , 7 by a decimation process similar to that used for the 
chain, now eliminating ul, u2, u3, U,, us,  U 6  using their equations of motion. This 
achieves a length scaling of the fractal by b = 2. The process involves the inversion of 
3 x3 matrices, because the variables u l ,  U', u5 satisfy coupled equations, as do u3, U,, 
u6. The coefficients of ul t ,  U'., . . . in the resulting scaled form of ( 6 )  then give the 
transformed variables a', y', p ' ,  6' as functions of the original variables. The (D, )  
symmetries of the lattice, under rotations by 2a/3  or reflections, enable the transformed 
variables p', y' to be obtained and also require, for consistency with the lattice 
symmetries, that the variables must (before and after scaling) be related by 

(7) 
- 

a& = pp = y y ( = h ) .  
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Thus only four independent variables occur. A convenient choice is a, p, y, A, where 
A is defined by (7 ) .  

a '= a2A/r ,  p ' =  p' A l T ,  y ' =  y2A/T, A '  = h2hii/r2 (8) 
where, with p spy, = A3/p, 

The resulting exact transformations are 

r=1-7A-3p-33/7,  
(9) 

A =  1 + A + 3 A 2 / ~ + A 4 / p 2 ~ A ( h , p ) ,  h= A(A,  b ) .  
The anisotropy-induced crossover in the diffusive dynamics is obtained from the 

transformation ( 8 )  linearised about its isotropic zero-frequency fixed point 

(10) a* = p *  = y* = A*'/, =$, 

The eigenvalues (A,,,, A d ,  A,)  and associated eigenvectors ( a  - a*, E - E * ,  . . . , 7 - ?*) 
are 

A , = 5 :  ( l , l , l , l , l , l )  ( 1 l a )  

A d  = 2: (a, -a, 6, - b, c, - c), (1lb)  

(1 lc )  r 5 ,  ( 1 , - 1 , 1 , - 1 , 1 , - 1 ) .  

These eigenvectors correspond respectively to the isotropic case ( 1  1 a) ,  the biased case 
( 1  1 b)  in which the hopping is uniaxially anisotropic, and a rotationally anisotropic 
case ( 1  1 c )  tending to give rotational diffusion. The associated exponents are 

a + b + c = 0 
A = 1 .  

(12) 5 z = log, 5, 4 =log, 2 = 1 ,  5 = log, 5. 

z is the 'anomalous' dynamic critical exponent for the isotropic case [8-111 and 4 and 
5 are new exponents respectively characterising the crossover to the drift behaviour 
caused by bias, and the corrections-to-scaling caused by the effects of rotational 
anisotropy, which is an irrelevant operator. 

The dynamic scaling form analogous to ( 5 ) ,  but (because of the lack of translational 
invariance in the fractal) now more appropriately written as a relation between diffusion 
length R and diffusion time t is, for large R, t, 

R = t ' / 'F(d t4 / ' ,  rt-61') ( 4  r + 0) (13 )  

where d and r are measures of bias and rotational anisotropy respectively. For small 
argument F goes to a constant, giving isotropic diffusion behaviour. Other asymptotic 
behaviours can be obtained by considering the neighbourhood of the anisotropic fixed 
points of (8) .  Of these, the most important ones are those governing the new asymptotic 
drift behaviour, and they have typically one hopping variable non-zero. The associated 
dynamic eigenvalue is 2 ,  so the bias-induced crossover is to asymptotic behaviour 
R cc dr (of strikingly simple form for a fractal result). 

The treatment just given involves a generalised diffusion equation, (6), the variables 
of which have only been restricted by symmetry. In a normal lattice no further 
restrictions arise from making the total hopping probability to and from all sites the 
same, but in the anisotropic fractal such a further requirement limits the possible 
anisotropy only to rotational type and suppresses the drift crossover. Since this is due 
to a special characteristic of the fractal this unnecessarily restricted viewpoint has been 
avoided here. 
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The scaling treatment given here of diffusion in non-uniform (random or fractal) 
systems has indicated the possible effects of anisotropy on the diffusive limit behaviour. 
The relevance or irrelevance of anisotropy appears to depend on the nature of the 
anisotropy rather than whether. it accompanies random or fractal aspects, whose 
predominant effects are to give additional (dilution-induced) crossover (equation ( 5 ) ) ,  
or exotic exponents (equation (12)) which model those at the percolation threshold. 

Whether the unit value of the crossover exponent 4 in all the cases considered' 
(including the fractal, where integer exponents are uncommon) is a coincidence or 
has significance needs further investigation. Similarly, though the crossover to drift 
behaviour seen in the biased cases is in qualitative agreement with Monte Carlo 
observations [21], for a quantitative comparison a direct scaling treatment of the random 
higher-dimensional system, as in reference [9] but with bias, is needed. There is so 
far no simulation with which the anisotropic fractal results can be compared. It would 
be of considerable interest to have both simulations and more complete theoretical 
discussions (e.g. on a real random system) of diffusion with such anisotropies. 
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